New Sesquiterpenes from Cacalia ainsliaeflora

Man Jun MAO, Cheng Shan YUAN, Zhong Jian JIA*
Department of Chemistry, National Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000

Abstract

Two new eremophilane sesquiterpenes, 3β-angeloyloxy-8-oxo-eremophil-6(7)-en-12oic acid $\mathbf{1}$ and 3β-angeloyloxy-10 β-hydroxy-8-oxo-eremophil-6 (7)-en-12-oic acid 2 , and a novel nor-eremophilane derivative, 3β-angeloyloxy- 10β-hydroxy-8-oxo-eremophil-6(7)-en $\mathbf{3}$ were isolated from the roots of Cacalia ainsliaeflora. Their structures were elucidated by spectroscopic methods, including 2D NMR.

Keywords: Cacalia ainsliaeflora, Compositae, eremophilane sesquiterpenes.

In a previous study, we reported five eremophilane sesquiterpenes from Cacalia ainsliaeflora ${ }^{1}$. In continuation of our investigation on sesquiterponoids from this plant, here we describe the structural elucidation of two new eremophilane sesquiterpenes and a novel nor-eremophilane derivative.

$1 \mathrm{R}=\mathrm{H}$
$2 \mathrm{R}=\mathrm{OH}$

Ang $=$

3

Compound 1, colorless gum; $[\alpha]_{\mathrm{D}}^{20}+10.8\left(c \quad 0.55, \mathrm{CHCl}_{3}\right)$. The IR spectrum indicated the presence of a typical α, β-unsaturated ketone $\left(1675 \mathrm{~cm}^{-1}\right)$ and carboxyl group (1710, $1736 \mathrm{~cm}^{-1}$). The molecular formula, $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{5}$, was determined by HRESIMS $m / z 349.2013\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, calcd. 349.2010). The NMR data of $\mathbf{1}$ were similar to those reported in the literature ${ }^{2}$. The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and DEPT-NMR (Table 1) indicated the presence of three methyl groups characterized of an eremophilenolide [δ $1.34(\mathrm{~d}, 3 \mathrm{H}, J=7.1, \mathrm{H}-13), \delta 1.24(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-14), \delta 1.00(\mathrm{~d}, 3 \mathrm{H} J=7.0, \mathrm{H}-15)$], an angeloyl group and an olefin [$\delta 6.63(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}-6), \delta 154.6(\mathrm{C}-6)]$, an oxygen-bearing methine $[\delta$ $4.90(\mathrm{dt}, 1 \mathrm{H}, J=5.4,3.9 \mathrm{~Hz}, \mathrm{H}-3), \delta 73.0(\mathrm{C}-3)]$ and a carbonyl group [$\delta 197.9$ (C-8)]. The signal of H-9 was double doublets [$\delta 2.38(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=17.5,4.8 \mathrm{~Hz}, \mathrm{H}-9 \alpha), \delta 2.64$

[^0]Table $1{ }^{1} \mathrm{H}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{CNMR}(100 \mathrm{MHz})$ and DEPT data of $\mathbf{1 - 3}\left(\mathrm{CDCl}_{3}\right)(\delta \mathrm{ppm}, J \mathrm{~Hz})$

H	$1 \delta_{\mathrm{H}}$	$2 \delta_{\mathrm{H}}$	$3 \delta_{\mathrm{H}}$
1	2.10 m	2.38 m	2.24 m
	1.95 m	2.12 m	2.00 m
2	1.73 m	1.85 m	1.83 m
	1.25 m	1.71 m	1.68 m
3	4.90 ddd (6.0, 3.9, 3.9)	4.96 ddd ($5.4,3.0,3.0$)	4.98 ddd (5.4, 3.3, 3.1)
4	1.53 dq	1.65 dq	1.60 dq
6	6.63 brs	6.59 brs	6.66 d (2.1)
9	$2.64 \mathrm{dd}(17.5,4.8)$	2.85 d (16.5)	2.90 d (16.7)
	$2.38 \mathrm{dd}(17.5,4.8)$	2.51 d (16.5)	2.55 d (16.7)
10	2.10 m		
11	3.58 brq (7.2)	3.57 brq (7.0)	2.34 s
12			1.24 s
13	1.34 d (7.1)	$1.25 \mathrm{~d}(7.0)$	$1.03 \mathrm{~d}(7.2)$
14	1.24 s	1.32 s	
15	1.00 d (7.0)	$1.14 \mathrm{~d}(7.0)$	
	6.09 brq (7.2)	$6.08 \mathrm{brq}(7.1)$	$6.09 \mathrm{brq}(7.0)$
OAng	$1.99 \mathrm{dq}(7.2,1.2)$	1.95 brd (7.1)	$2.03 \mathrm{dq}(7.0,1.5)$
	1.90 brs	1.89 brs	1.94 brd (1.4)
C	$1 \delta_{\mathrm{C}}$	$2 \delta_{\text {C }}$	$3 \delta_{\text {C }}$
1	24.6 ($\left.\mathrm{CH}_{2}\right)$	$25.4\left(\mathrm{CH}_{2}\right)$	$27.1\left(\mathrm{CH}_{2}\right)$
2	$25.8\left(\mathrm{CH}_{2}\right)$	$33.3\left(\mathrm{CH}_{2}\right)$	$30.1\left(\mathrm{CH}_{2}\right)$
3	73.0 (CH)	73.6 (CH)	72.0 (CH)
4	41.2 (CH)	43.3 (CH)	41.8 (CH)
5	39.9 (C)	45.2 (C)	55.1 (C)
6	154.6 (CH)	154.2 (CH)	152.5 (CH)
7	136.6 (C)	137.1 (C)	141.5 (C)
8	197.9 (C)	197.1 (C)	197.3 (C)
9	$39.7\left(\mathrm{CH}_{2}\right)$	48.6 ($\left.\mathrm{CH}_{2}\right)$	$41.5\left(\mathrm{CH}_{2}\right)$
10	36.2 (CH)	74.5 (C)	81.3 (C)
11	38.6 (CH)	38.2 (CH)	$8.7\left(\mathrm{CH}_{3}\right)$
12	178.4 (C)	175.6 (C)	$14.9\left(\mathrm{CH}_{3}\right)$
13	15.8 ($\left.\mathrm{CH}_{3}\right)$	$16.4\left(\mathrm{CH}_{3}\right)$	$13.6\left(\mathrm{CH}_{3}\right)$
14	$24.6\left(\mathrm{CH}_{3}\right)$	$18.8\left(\mathrm{CH}_{3}\right)$	
15	$8.8\left(\mathrm{CH}_{3}\right)$	$11.4\left(\mathrm{CH}_{3}\right)$	
	167.3 (C)	167.4 (C)	167.7 (C)
	138.0 (CH)	138.0 (CH)	138.6 (CH)
OAng	128.0 (C)	129.0 (C)	127.7 (C)
	$20.7\left(\mathrm{CH}_{3}\right)$	$20.9\left(\mathrm{CH}_{3}\right)$	$20.9\left(\mathrm{CH}_{3}\right)$
	$15.8\left(\mathrm{CH}_{3}\right)$	$15.8\left(\mathrm{CH}_{3}\right)$	$15.7\left(\mathrm{CH}_{3}\right)$

(dd, $1 \mathrm{H}, J=17.5,4.8 \mathrm{~Hz}, \mathrm{H}-9 \beta$)] due to the coupling $\mathrm{J}_{9 \alpha .9 \beta}$ and $\mathrm{J}_{9.10}$. These spectral data agreed with the proposed structure 1. The localization of the angeloyloxy moiety at the $\mathrm{C}-3$ position was deduced from the HMBC spectrum in which $\mathrm{H}-3$ gave a long-range coupling with $\mathrm{C}_{1^{\prime}}(\delta 167.3)$ and $\mathrm{C}-3$ gave a long-range coupling with $\mathrm{H}-15$. The long-range coupling between C-12 and $\mathrm{H}-13, \mathrm{H}-11(\delta 3.58 \mathrm{brq}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}$) indicated that a carboxyl group was at $\mathrm{C}-11$ position. The coupling pattern observed for $\mathrm{H}-3$ at δ 4.90 (ddd, $1 \mathrm{H}, J=6.0,3.9,3.9 \mathrm{~Hz}$) implied that the angeloyl group at $\mathrm{C}-3$ was β-equatorial ${ }^{2,3}$, and this was supported by the NOESY cross peak between H-3 and H-4 α.

The NOESY cross-peak between H-4 and H-9 α ($\delta 2.38$, dd, 1 H), $\mathrm{H}-10$ and H-14, H-6 and $\mathrm{H}-3 \alpha$ further confirmed an A / B cis-fused eremophilane. Therefore compound $\mathbf{1}$ was determined as 3β-angeloyloxy -8-oxo- eremophil-6 (7)-en-12-oic acid.

Compound 2, colorless gum, $[\alpha]_{\mathrm{D}}^{20}+33.8\left(c 0.68, \mathrm{CHCl}_{3}\right)$. The molecular formula, $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{6}$, was deduced by HRESIMS $m / z 382.2228\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right.$, calcd. 382.2224). The NMR (Table 1) and IR data of $\mathbf{2}$ were similar to those of $\mathbf{1}$ except for a hydroxy-bearing quaternary carbon ($\delta 74.5$) in $\mathbf{2}$ instead of a methine ($\delta 36.2, \mathrm{CH}$) in $\mathbf{1}$. The downfield shift of the H-14 methyl singlet ($\delta 1.32$) and an oxygen-bearing quaternary carbon (δ 74.5) obviously required an β-orientated hydroxyl at $\mathrm{C}-10^{4}$. Therefore, the structure of 2 was determined to be 3β-angeloyloxy-10 β-hydroxy-8-oxo-eremophil-6 (7)-en-12-oic acid.

Compound 3, a colorless gum, $[\alpha]_{\mathrm{D}}^{20}+80\left(\mathrm{c} 0.20, \mathrm{CHCl}_{3}\right)$. The molecular formula, $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{4}$, was determined by HRESIMS $m / z 329.1709[\mathrm{M}+\mathrm{Na}]^{+}$(calcd. 329.1723), ${ }^{13} \mathrm{C}$ NMR and DEPT NMR. The NMR data of $\mathbf{3}$ were similar to those of $\mathbf{2}$ except for the signals of $\mathrm{H}-11, \mathrm{C}-11$ and $\mathrm{C}-12$ were missing and the presence of a methyl singlet at δ 2.34 in $\mathbf{3}$ instead of the methyl doublet at $\delta 1.25(\mathrm{~d}, J=7.0 \mathrm{~Hz})$ in $\mathbf{2}$. These data suggested that the methyl ($\delta 2.34$) was located at $\mathrm{C}-7$. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and HMBC experiments supported the structure of $\mathbf{3}$.

Acknowledgments

This work was supported by the NNSFC (No. 29972017).

References

1. M. J. Mao, Z. J. Jia, Planta Medica, 2002, 68, 55.
2. Y. Yasunori, K. Masao, Chem. Pharm. Bull., 1995, 43, 1738.
3. Y. Zhao, Z. J. Jia, R. X. Tan, L. Yang Phytochemistry, 1992, 31, 2785.
4. G. Massiot, J. M. Nuzillard, L. Olivier, et al., Phytochemistry, 1990, 29, 2207.

Received 9 July, 2003

[^0]: *E-mail: jiazj@lzu.edu.cn

