New Sesquiterpenes from Cacalia ainsliaeflora

Man Jun MAO, Cheng Shan YUAN, Zhong Jian JIA*

Department of Chemistry, National Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000

Abstract: Two new eremophilane sesquiterpenes, 3β -angeloyloxy-8-oxo-eremophil-6(7)-en-12-oic acid **1** and 3β -angeloyloxy-10 β -hydroxy-8-oxo-eremophil-6 (7)-en-12-oic acid **2**, and a novel nor-eremophilane derivative, 3β -angeloyloxy-10 β -hydroxy-8-oxo-eremophil-6(7)-en **3** were isolated from the roots of *Cacalia ainsliaeflora*. Their structures were elucidated by spectroscopic methods, including 2D NMR.

Keywords: Cacalia ainsliaeflora, Compositae, eremophilane sesquiterpenes.

In a previous study, we reported five eremophilane sesquiterpenes from *Cacalia ainsliaeflora*¹. In continuation of our investigation on sesquiterponoids from this plant, here we describe the structural elucidation of two new eremophilane sesquiterpenes and a novel nor-eremophilane derivative.

Compound **1**, colorless gum; $[\alpha]_{D}^{20}$ +10.8 (*c* 0.55, CHCl₃). The IR spectrum indicated the presence of a typical α , β -unsaturated ketone (1675cm⁻¹) and carboxyl group (1710, 1736cm⁻¹). The molecular formula, C₂₀H₂₈O₅, was determined by HRESIMS *m*/*z* 349.2013 ([M+H]⁺, calcd. 349.2010). The NMR data of **1** were similar to those reported in the literature². The ¹H, ¹³C NMR and DEPT-NMR (**Table 1**) indicated the presence of three methyl groups characterized of an eremophilenolide [δ 1.34 (d, 3H, *J*=7.1, H-13), δ 1.24 (s, 3H, H-14), δ 1.00 (d, 3H *J*=7.0, H-15)], an angeloyl group and an olefin [δ 6.63 (br s, 1H, H-6), δ 154.6 (C-6)], an oxygen-bearing methine [δ 4.90 (dt, 1H, *J*=5.4, 3.9Hz, H-3), δ 73.0 (C-3)] and a carbonyl group [δ 197.9 (C-8)]. The signal of H-9 was double doublets [δ 2.38 (dd, 1H, *J*=17.5, 4.8Hz, H-9 α), δ 2.64

^{*} E-mail: jiazj@lzu.edu.cn

Н	1 δ _H	2 δ _H	3 δ _H
1	2.10 m	2.38 m	2.24 m
	1.95 m	2.12 m	2.00 m
2	1.73 m	1.85 m	1.83 m
	1.25 m	1.71 m	1.68 m
3	4.90 ddd (6.0, 3.9, 3.9)	4.96ddd (5.4, 3.0, 3.0)	4.98 ddd (5.4, 3.3, 3.1)
4	1.53 dq	1.65 dq	1.60 dq
6	6.63 brs	6.59 brs	6.66 d (2.1)
9	2.64 dd(17.5,4.8)	2.85 d (16.5)	2.90 d (16.7)
,	2.38 dd(17.5,4.8)	2.51 d (16.5)	2.55 d (16.7)
10	2.10 m		
11	3.58 brq (7.2)	3.57 brq (7.0)	2.34 s
12			1.24 s
13	1.34 d (7.1)	1.25 d (7.0)	1.03 d (7.2)
14	1.24 s	1.32 s	
15	1.00 d (7.0)	1.14 d (7.0)	
	6.00 hrg (7.2)	6.09 hrs(7.1)	6.00 hrg (7.0)
OAna	1.00 dz (7.2, 1.2)	0.08 big(7.1)	0.09 bid(7.0)
OAlig	$1.99 \mathrm{dq} (7.2, 1.2)$	1.93 bld (7.1)	2.05 dq(7.0, 1.3)
	1.90 BFS	1.89 bfs	1.94 brd (1.4)
С	1 δ _C	2 δ _C	3 δ _C
C 1	1 δ _C 24.6 (CH ₂)	2 δ _C 25.4 (CH ₂)	3 δ _C 27.1 (CH ₂)
C 1 2	1 δ _C 24.6 (CH ₂) 25.8 (CH ₂)	2 δ _C 25.4 (CH ₂) 33.3 (CH ₂)	3 δ _C 27.1 (CH ₂) 30.1 (CH ₂)
C 1 2 3	<u>1</u> δ _C 24.6 (CH ₂) 25.8 (CH ₂) 73.0 (CH)	2 δ _C 25.4 (CH ₂) 33.3 (CH ₂) 73.6 (CH)	<u>3</u> δ _C 27.1 (CH ₂) 30.1 (CH ₂) 72.0 (CH)
C 1 2 3 4	<u>1</u> δ _C 24.6 (CH ₂) 25.8 (CH ₂) 73.0 (CH) 41.2 (CH)	$\begin{array}{c} 2 \delta_{\rm C} \\ \hline 25.4 ({\rm CH}_2) \\ 33.3 ({\rm CH}_2) \\ 73.6 ({\rm CH}) \\ 43.3 ({\rm CH}) \end{array}$	<u>3 δ_C</u> 27.1 (CH ₂) 30.1 (CH ₂) 72.0 (CH) 41.8 (CH)
C 1 2 3 4 5	<u>1</u> δ _C 24.6 (CH ₂) 25.8 (CH ₂) 73.0 (CH) 41.2 (CH) 39.9 (C)	$\begin{array}{c} 2 \delta_{\rm C} \\ \hline 25.4 ({\rm CH}_2) \\ 33.3 ({\rm CH}_2) \\ 73.6 ({\rm CH}) \\ 43.3 ({\rm CH}) \\ 45.2 ({\rm C}) \end{array}$	<u>3</u> δ _C 27.1 (CH ₂) 30.1 (CH ₂) 72.0 (CH) 41.8 (CH) 55.1 (C)
C 1 2 3 4 5 6	1 δ _C 24.6 (CH ₂) 25.8 (CH ₂) 73.0 (CH) 41.2 (CH) 39.9 (C) 154.6 (CH)	$\begin{array}{c} 2 \delta_{\rm C} \\ \hline 25.4 ({\rm CH}_2) \\ 33.3 ({\rm CH}_2) \\ 73.6 ({\rm CH}) \\ 43.3 ({\rm CH}) \\ 45.2 ({\rm C}) \\ 154.2 ({\rm CH}) \end{array}$	<u>3</u> δ _C 27.1 (CH ₂) 30.1 (CH ₂) 72.0 (CH) 41.8 (CH) 55.1 (C) 152.5 (CH)
C 1 2 3 4 5 6 7	1 δ _C 24.6 (CH ₂) 25.8 (CH ₂) 73.0 (CH) 41.2 (CH) 39.9 (C) 154.6 (CH) 136.6 (C)	$\begin{array}{c} 2 \delta_{\rm C} \\ \hline 25.4 ({\rm CH}_2) \\ 33.3 ({\rm CH}_2) \\ 73.6 ({\rm CH}) \\ 43.3 ({\rm CH}) \\ 45.2 ({\rm C}) \\ 154.2 ({\rm CH}) \\ 137.1 ({\rm C}) \end{array}$	$\frac{3 \delta_{\rm C}}{27.1 ({\rm CH}_2)} \\ 30.1 ({\rm CH}_2) \\ 72.0 ({\rm CH}) \\ 41.8 ({\rm CH}) \\ 55.1 ({\rm C}) \\ 152.5 ({\rm CH}) \\ 141.5 ({\rm C}) \\ \end{array}$
C 1 2 3 4 5 6 7 8	1 δ _C 24.6 (CH ₂) 25.8 (CH ₂) 73.0 (CH) 41.2 (CH) 39.9 (C) 154.6 (CH) 136.6 (C) 197.9 (C)	$\begin{array}{c} 2 \delta_{\rm C} \\ 25.4 ({\rm CH}_2) \\ 33.3 ({\rm CH}_2) \\ 73.6 ({\rm CH}) \\ 43.3 ({\rm CH}) \\ 45.2 ({\rm C}) \\ 154.2 ({\rm CH}) \\ 137.1 ({\rm C}) \\ 197.1 ({\rm C}) \end{array}$	$\frac{3 \delta_{\rm C}}{27.1 ({\rm CH}_2)} \\ 30.1 ({\rm CH}_2) \\ 72.0 ({\rm CH}) \\ 41.8 ({\rm CH}) \\ 55.1 ({\rm C}) \\ 152.5 ({\rm CH}) \\ 141.5 ({\rm C}) \\ 197.3 ({\rm C}) \\ \end{array}$
C 1 2 3 4 5 6 7 8 9	$\frac{1 \delta_{C}}{24.6 (CH_{2})}$ 25.8 (CH ₂) 73.0 (CH) 41.2 (CH) 39.9 (C) 154.6 (CH) 136.6 (C) 197.9 (C) 39.7 (CH ₂)	$\begin{array}{c} 2 \delta_{\rm C} \\ \hline 25.4 ({\rm CH}_2) \\ 33.3 ({\rm CH}_2) \\ 73.6 ({\rm CH}) \\ 43.3 ({\rm CH}) \\ 45.2 ({\rm C}) \\ 154.2 ({\rm CH}) \\ 137.1 ({\rm C}) \\ 197.1 ({\rm C}) \\ 48.6 ({\rm CH}_2) \end{array}$	$\frac{3 \delta_{\rm C}}{27.1 ({\rm CH}_2)} \\ 30.1 ({\rm CH}_2) \\ 72.0 ({\rm CH}) \\ 41.8 ({\rm CH}) \\ 55.1 ({\rm C}) \\ 152.5 ({\rm CH}) \\ 141.5 ({\rm C}) \\ 197.3 ({\rm C}) \\ 41.5 ({\rm CH}_2) \\ \end{array}$
C 1 2 3 4 5 6 7 8 9 10	$\frac{1 \delta_{C}}{24.6 (CH_{2})}$ 25.8 (CH ₂) 73.0 (CH) 41.2 (CH) 39.9 (C) 154.6 (CH) 136.6 (C) 197.9 (C) 39.7 (CH ₂) 36.2 (CH)	$\begin{array}{c} 2 \delta_{\rm C} \\ \hline 25.4 ({\rm CH}_2) \\ 33.3 ({\rm CH}_2) \\ 73.6 ({\rm CH}) \\ 43.3 ({\rm CH}) \\ 45.2 ({\rm C}) \\ 154.2 ({\rm CH}) \\ 137.1 ({\rm C}) \\ 197.1 ({\rm C}) \\ 48.6 ({\rm CH}_2) \\ 74.5 ({\rm C}) \end{array}$	$\frac{3 \delta_{\rm C}}{27.1 ({\rm CH}_2)} \\ 30.1 ({\rm CH}_2) \\ 72.0 ({\rm CH}) \\ 41.8 ({\rm CH}) \\ 55.1 ({\rm C}) \\ 152.5 ({\rm CH}) \\ 141.5 ({\rm C}) \\ 197.3 ({\rm C}) \\ 41.5 ({\rm CH}_2) \\ 81.3 ({\rm C}) \\ \end{array}$
C 1 2 3 4 5 6 7 8 9 10 11	$\frac{1 \delta_{C}}{24.6 (CH_{2})}$ 25.8 (CH ₂) 73.0 (CH) 41.2 (CH) 39.9 (C) 154.6 (CH) 136.6 (C) 197.9 (C) 39.7 (CH ₂) 36.2 (CH) 38.6 (CH)	$\begin{array}{c} 2 \delta_{\rm C} \\ \hline 25.4 ({\rm CH}_2) \\ 33.3 ({\rm CH}_2) \\ 73.6 ({\rm CH}) \\ 43.3 ({\rm CH}) \\ 45.2 ({\rm C}) \\ 154.2 ({\rm CH}) \\ 137.1 ({\rm C}) \\ 197.1 ({\rm C}) \\ 48.6 ({\rm CH}_2) \\ 74.5 ({\rm C}) \\ 38.2 ({\rm CH}) \end{array}$	$\frac{3 \delta_{\rm C}}{27.1 ({\rm CH}_2)} \\ 30.1 ({\rm CH}_2) \\ 72.0 ({\rm CH}) \\ 41.8 ({\rm CH}) \\ 55.1 ({\rm C}) \\ 152.5 ({\rm CH}) \\ 141.5 ({\rm C}) \\ 197.3 ({\rm C}) \\ 41.5 ({\rm CH}_2) \\ 81.3 ({\rm C}) \\ 8.7 ({\rm CH}_3) \\ \end{array}$
C 1 2 3 4 5 6 7 8 9 10 11 12	$\frac{1 \delta_{C}}{24.6 (CH_{2})}$ 25.8 (CH ₂) 73.0 (CH) 41.2 (CH) 39.9 (C) 154.6 (CH) 136.6 (C) 197.9 (C) 39.7 (CH ₂) 36.2 (CH) 38.6 (CH) 178.4 (C)	$\begin{array}{c} 2 \delta_{\rm C} \\ \hline 25.4 ({\rm CH}_2) \\ 33.3 ({\rm CH}_2) \\ 73.6 ({\rm CH}) \\ 43.3 ({\rm CH}) \\ 45.2 ({\rm C}) \\ 154.2 ({\rm CH}) \\ 137.1 ({\rm C}) \\ 197.1 ({\rm C}) \\ 48.6 ({\rm CH}_2) \\ 74.5 ({\rm C}) \\ 38.2 ({\rm CH}) \\ 175.6 ({\rm C}) \end{array}$	$\frac{3 \delta_{\rm C}}{27.1 ({\rm CH}_2)} \\ 30.1 ({\rm CH}_2) \\ 72.0 ({\rm CH}) \\ 41.8 ({\rm CH}) \\ 55.1 ({\rm C}) \\ 152.5 ({\rm CH}) \\ 141.5 ({\rm C}) \\ 197.3 ({\rm C}) \\ 41.5 ({\rm CH}_2) \\ 81.3 ({\rm C}) \\ 8.7 ({\rm CH}_3) \\ 14.9 ({\rm C} {\rm H}_3) \\ \end{array}$
C 1 2 3 4 5 6 7 8 9 10 11 12 13	$\frac{1 \delta_{C}}{24.6 (CH_{2})}$ 25.8 (CH ₂) 73.0 (CH) 41.2 (CH) 39.9 (C) 154.6 (CH) 136.6 (C) 197.9 (C) 39.7 (CH ₂) 36.2 (CH) 38.6 (CH) 178.4 (C) 15.8 (CH ₃)	$\begin{array}{c} 2 \delta_{\rm C} \\ \hline 25.4 ({\rm CH}_2) \\ 33.3 ({\rm CH}_2) \\ 73.6 ({\rm CH}) \\ 43.3 ({\rm CH}) \\ 45.2 ({\rm C}) \\ 154.2 ({\rm CH}) \\ 137.1 ({\rm C}) \\ 197.1 ({\rm C}) \\ 48.6 ({\rm CH}_2) \\ 74.5 ({\rm C}) \\ 38.2 ({\rm CH}) \\ 175.6 ({\rm C}) \\ 16.4 ({\rm CH}_3) \end{array}$	$\frac{3 \delta_{\rm C}}{27.1 ({\rm CH}_2)} \\ 30.1 ({\rm CH}_2) \\ 72.0 ({\rm CH}) \\ 41.8 ({\rm CH}) \\ 55.1 ({\rm C}) \\ 152.5 ({\rm CH}) \\ 141.5 ({\rm C}) \\ 197.3 ({\rm C}) \\ 41.5 ({\rm CH}_2) \\ 81.3 ({\rm C}) \\ 8.7 ({\rm CH}_3) \\ 14.9 ({\rm C} {\rm H}_3) \\ 13.6 ({\rm CH}_3) \\ \end{array}$
C 1 2 3 4 5 6 7 8 9 10 11 12 13 14	$\frac{1 \delta_{C}}{24.6 (CH_{2})}$ 25.8 (CH ₂) 73.0 (CH) 41.2 (CH) 39.9 (C) 154.6 (CH) 136.6 (C) 197.9 (C) 39.7 (CH ₂) 36.2 (CH) 38.6 (CH) 178.4 (C) 15.8 (CH ₃) 24.6 (CH ₃)	$\begin{array}{c} 2 \delta_{\rm C} \\ \hline 25.4 ({\rm CH}_2) \\ 33.3 ({\rm CH}_2) \\ 73.6 ({\rm CH}) \\ 43.3 ({\rm CH}) \\ 45.2 ({\rm C}) \\ 154.2 ({\rm CH}) \\ 137.1 ({\rm C}) \\ 197.1 ({\rm C}) \\ 197.1 ({\rm C}) \\ 48.6 ({\rm CH}_2) \\ 74.5 ({\rm C}) \\ 38.2 ({\rm CH}) \\ 175.6 ({\rm C}) \\ 16.4 ({\rm CH}_3) \\ 18.8 ({\rm CH}_3) \\ \end{array}$	$\frac{3 \delta_{\rm C}}{27.1 ({\rm CH}_2)} \\ 30.1 ({\rm CH}_2) \\ 72.0 ({\rm CH}) \\ 41.8 ({\rm CH}) \\ 55.1 ({\rm C}) \\ 152.5 ({\rm CH}) \\ 141.5 ({\rm C}) \\ 197.3 ({\rm C}) \\ 41.5 ({\rm CH}_2) \\ 81.3 ({\rm C}) \\ 8.7 ({\rm CH}_3) \\ 14.9 ({\rm C} {\rm H}_3) \\ 13.6 ({\rm CH}_3) \\ \end{array}$
C 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	$\frac{1 \delta_{C}}{24.6 (CH_{2})}$ 25.8 (CH ₂) 73.0 (CH) 41.2 (CH) 39.9 (C) 154.6 (CH) 136.6 (C) 197.9 (C) 39.7 (CH ₂) 36.2 (CH) 38.6 (CH) 178.4 (C) 15.8 (CH ₃) 24.6 (CH ₃) 8.8 (CH ₃)	$\begin{array}{c} 2 \delta_{\rm C} \\ \hline 25.4 ({\rm CH}_2) \\ 33.3 ({\rm CH}_2) \\ 73.6 ({\rm CH}) \\ 43.3 ({\rm CH}) \\ 45.2 ({\rm C}) \\ 154.2 ({\rm CH}) \\ 137.1 ({\rm C}) \\ 197.1 ({\rm C}) \\ 197.1 ({\rm C}) \\ 48.6 ({\rm CH}_2) \\ 74.5 ({\rm C}) \\ 38.2 ({\rm CH}) \\ 175.6 ({\rm C}) \\ 16.4 ({\rm CH}_3) \\ 18.8 ({\rm CH}_3) \\ 18.8 ({\rm CH}_3) \\ 11.4 ({\rm CH}_3) \end{array}$	$\frac{3 \delta_{\rm C}}{27.1 ({\rm CH}_2)} \\ 30.1 ({\rm CH}_2) \\ 72.0 ({\rm CH}) \\ 41.8 ({\rm CH}) \\ 55.1 ({\rm C}) \\ 152.5 ({\rm CH}) \\ 141.5 ({\rm C}) \\ 197.3 ({\rm C}) \\ 41.5 ({\rm CH}_2) \\ 81.3 ({\rm C}) \\ 8.7 ({\rm CH}_3) \\ 14.9 ({\rm C} {\rm H}_3) \\ 13.6 ({\rm CH}_3) \\ \end{array}$
C 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	$\frac{1 \delta_{C}}{24.6 (CH_{2})}$ 25.8 (CH ₂) 73.0 (CH) 41.2 (CH) 39.9 (C) 154.6 (CH) 136.6 (C) 197.9 (C) 39.7 (CH ₂) 36.2 (CH) 38.6 (CH) 178.4 (C) 15.8 (CH ₃) 24.6 (CH ₃) 8.8 (CH ₃) 167.3 (C)	$\begin{array}{c} 2 \delta_{\rm C} \\ \hline 25.4 ({\rm CH}_2) \\ 33.3 ({\rm CH}_2) \\ 73.6 ({\rm CH}) \\ 43.3 ({\rm CH}) \\ 45.2 ({\rm C}) \\ 154.2 ({\rm CH}) \\ 137.1 ({\rm C}) \\ 197.1 ({\rm C}) \\ 197.1 ({\rm C}) \\ 48.6 ({\rm CH}_2) \\ 74.5 ({\rm C}) \\ 38.2 ({\rm CH}) \\ 175.6 ({\rm C}) \\ 16.4 ({\rm CH}_3) \\ 18.8 ({\rm CH}_3) \\ 11.4 ({\rm CH}_3) \\ 11.4 ({\rm CH}_3) \\ 167.4 ({\rm C}) \end{array}$	$\frac{3 \delta_{\rm C}}{27.1 ({\rm CH}_2)}$ $30.1 ({\rm CH}_2)$ $72.0 ({\rm CH})$ $41.8 ({\rm CH})$ $55.1 ({\rm C})$ $152.5 ({\rm CH})$ $141.5 ({\rm C})$ $197.3 ({\rm C})$ $41.5 ({\rm CH}_2)$ $81.3 ({\rm C})$ $8.7 ({\rm CH}_3)$ $14.9 ({\rm CH}_3)$ $13.6 ({\rm CH}_3)$ $167.7 ({\rm C})$
C 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	$\frac{1 \delta_{C}}{24.6 (CH_{2})}$ 25.8 (CH ₂) 73.0 (CH) 41.2 (CH) 39.9 (C) 154.6 (CH) 136.6 (C) 197.9 (C) 39.7 (CH ₂) 36.2 (CH) 38.6 (CH) 178.4 (C) 15.8 (CH ₃) 24.6 (CH ₃) 8.8 (CH ₃) 167.3 (C) 138.0 (CH)	$\begin{array}{c} 2 \delta_{\rm C} \\ \hline 25.4 ({\rm CH}_2) \\ \hline 33.3 ({\rm CH}_2) \\ \hline 73.6 ({\rm CH}) \\ 43.3 ({\rm CH}) \\ 43.3 ({\rm CH}) \\ 45.2 ({\rm C}) \\ \hline 154.2 ({\rm CH}) \\ \hline 137.1 ({\rm C}) \\ \hline 197.1 ({\rm C}) \\ \hline 197.1 ({\rm C}) \\ 48.6 ({\rm CH}_2) \\ \hline 74.5 ({\rm C}) \\ \hline 38.2 ({\rm CH}) \\ \hline 175.6 ({\rm C}) \\ \hline 16.4 ({\rm CH}_3) \\ \hline 18.8 ({\rm CH}_3) \\ \hline 11.4 ({\rm CH}_3) \\ \hline 167.4 ({\rm C}) \\ \hline 138.0 ({\rm CH}) \end{array}$	$\frac{3 \delta_{\rm C}}{27.1 ({\rm CH}_2)}$ $30.1 ({\rm CH}_2)$ $72.0 ({\rm CH})$ $41.8 ({\rm CH})$ $55.1 ({\rm C})$ $152.5 ({\rm CH})$ $141.5 ({\rm C})$ $197.3 ({\rm C})$ $41.5 ({\rm CH}_2)$ $81.3 ({\rm C})$ $8.7 ({\rm CH}_3)$ $14.9 ({\rm CH}_3)$ $13.6 ({\rm CH}_3)$ $167.7 ({\rm C})$ $138.6 ({\rm CH})$
C 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 OAng	$\frac{1}{8c}$ 24.6 (CH ₂) 25.8 (CH ₂) 73.0 (CH) 41.2 (CH) 39.9 (C) 154.6 (CH) 136.6 (C) 197.9 (C) 39.7 (CH ₂) 36.2 (CH) 38.6 (CH) 178.4 (C) 15.8 (CH ₃) 24.6 (CH ₃) 8.8 (CH ₃) 167.3 (C) 138.0 (CH) 128.0 (CH)	$\begin{array}{c} 2 \delta_{\rm C} \\ \hline 25.4 ({\rm CH}_2) \\ \hline 33.3 ({\rm CH}_2) \\ \hline 73.6 ({\rm CH}) \\ \hline 43.3 ({\rm CH}) \\ \hline 43.3 ({\rm CH}) \\ \hline 45.2 ({\rm C}) \\ \hline 154.2 ({\rm CH}) \\ \hline 137.1 ({\rm C}) \\ \hline 197.1 ({\rm C}) \\ \hline 197.1 ({\rm C}) \\ \hline 48.6 ({\rm CH}_2) \\ \hline 74.5 ({\rm C}) \\ \hline 38.2 ({\rm CH}) \\ \hline 175.6 ({\rm C}) \\ \hline 16.4 ({\rm CH}_3) \\ \hline 18.8 ({\rm CH}_3) \\ \hline 11.4 ({\rm CH}_3) \\ \hline 167.4 ({\rm C}) \\ \hline 138.0 ({\rm CH}) \\ \hline 129.0 ({\rm C}) \end{array}$	$\frac{3 \delta_{\rm C}}{27.1 ({\rm CH}_2)} \\ 30.1 ({\rm CH}_2) \\ 72.0 ({\rm CH}) \\ 41.8 ({\rm CH}) \\ 55.1 ({\rm C}) \\ 152.5 ({\rm CH}) \\ 141.5 ({\rm C}) \\ 197.3 ({\rm C}) \\ 41.5 ({\rm CH}_2) \\ 81.3 ({\rm C}) \\ 8.7 ({\rm CH}_3) \\ 14.9 ({\rm C} {\rm H}_3) \\ 13.6 ({\rm CH}_3) \\ 13.6 ({\rm CH}) \\ 127.7 ({\rm C}) \\ 127.7 ({\rm C}) \\ \end{array}$
C 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 OAng	$1 \delta_C$ 24.6 (CH ₂) 25.8 (CH ₂) 73.0 (CH) 41.2 (CH) 39.9 (C) 154.6 (CH) 136.6 (C) 197.9 (C) 39.7 (CH ₂) 36.2 (CH) 178.4 (C) 15.8 (CH ₃) 24.6 (CH ₃) 8.8 (CH ₃) 167.3 (C) 138.0 (CH) 128.0 (C) 20.7 (CH ₃)	$\begin{array}{c} 2 \delta_{\rm C} \\ \hline 25.4 ({\rm CH}_2) \\ \hline 33.3 ({\rm CH}_2) \\ \hline 73.6 ({\rm CH}) \\ \hline 43.3 ({\rm CH}) \\ \hline 43.3 ({\rm CH}) \\ \hline 45.2 ({\rm C}) \\ \hline 154.2 ({\rm CH}) \\ \hline 137.1 ({\rm C}) \\ \hline 197.1 ({\rm C}) \\ \hline 197.1 ({\rm C}) \\ \hline 48.6 ({\rm CH}_2) \\ \hline 74.5 ({\rm C}) \\ \hline 38.2 ({\rm CH}) \\ \hline 175.6 ({\rm C}) \\ \hline 16.4 ({\rm CH}_3) \\ \hline 18.8 ({\rm CH}_3) \\ \hline 11.4 ({\rm CH}_3) \\ \hline 167.4 ({\rm C}) \\ \hline 138.0 ({\rm CH}) \\ \hline 129.0 ({\rm C}) \\ \hline 20.9 ({\rm CH}_3) \end{array}$	$\frac{3 \delta_{\rm C}}{27.1 ({\rm CH}_2)} \\ 30.1 ({\rm CH}_2) \\ 72.0 ({\rm CH}) \\ 41.8 ({\rm CH}) \\ 55.1 ({\rm C}) \\ 152.5 ({\rm CH}) \\ 141.5 ({\rm C}) \\ 197.3 ({\rm C}) \\ 41.5 ({\rm CH}_2) \\ 81.3 ({\rm C}) \\ 8.7 ({\rm CH}_3) \\ 14.9 ({\rm C} {\rm H}_3) \\ 13.6 ({\rm CH}_3) \\ 13.6 ({\rm CH}) \\ 127.7 ({\rm C}) \\ 20.9 ({\rm CH}_3) \\ \end{array}$

Table 1 ¹H (400MHz) and ¹³CNMR (100MHz) and DEPT data of 1-3 (CDCl₃) (δ ppm, J Hz)

(dd, 1H, J=17.5, 4.8Hz, H-9 β)] due to the coupling $J_{9\alpha,9\beta}$ and $J_{9.10}$. These spectral data agreed with the proposed structure **1**. The localization of the angeloyloxy moiety at the C-3 position was deduced from the HMBC spectrum in which H-3 gave a long-range coupling with C₁. (δ 167.3) and C-3 gave a long-range coupling with H-15. The long-range coupling between C-12 and H-13, H-11 (δ 3.58 brq, 1H, J=7.2 Hz) indicated that a carboxyl group was at C-11 position. The coupling pattern observed for H-3 at δ 4.90 (ddd, 1H, J=6.0, 3.9, 3.9Hz) implied that the angeloyl group at C-3 was β -equatorial^{2,3}, and this was supported by the NOESY cross peak between H-3 and H-4 α .

New Sesquiterpenes from Cacalia ainsliaeflora

The NOESY cross-peak between H-4 and H-9 α (δ 2.38, dd, 1H), H-10 and H-14, H-6 and H-3 α further confirmed an A/B *cis*-fused eremophilane. Therefore compound **1** was determined as 3 β -angeloyloxy -8-oxo- eremophil-6 (7)-en-12-oic acid.

Compound 2, colorless gum, $[\alpha]_{D}^{20}$ +33.8 (*c* 0.68, CHCl₃). The molecular formula, C₂₀H₂₈O₆, was deduced by HRESIMS *m/z* 382.2228 ([M+NH₄]⁺, calcd. 382.2224). The NMR (**Table 1**) and IR data of **2** were similar to those of **1** except for a hydroxy-bearing quaternary carbon (δ 74.5) in **2** instead of a methine (δ 36.2, CH) in **1**. The downfield shift of the H-14 methyl singlet (δ 1.32) and an oxygen-bearing quaternary carbon (δ 74.5) obviously required an β -orientated hydroxyl at C-10⁴. Therefore, the structure of **2** was determined to be 3 β -angeloyloxy-10 β -hydroxy-8-oxo-eremophil-6 (7)-en-12-oic acid.

Compound **3**, a colorless gum, $[\alpha]_{D}^{20}$ +80 (c 0.20, CHCl₃). The molecular formula, C₁₈H₂₆O₄, was determined by HRESIMS *m/z* 329.1709 [M+Na]⁺ (calcd. 329.1723), ¹³C NMR and DEPT NMR. The NMR data of **3** were similar to those of **2** except for the signals of H-11, C-11 and C-12 were missing and the presence of a methyl singlet at δ 2.34 in **3** instead of the methyl doublet at δ 1.25 (d, *J*=7.0 Hz) in **2**. These data suggested that the methyl (δ 2.34) was located at C-7. The ¹H-¹H COSY and HMBC experiments supported the structure of **3**.

Acknowledgments

This work was supported by the NNSFC (No. 29972017).

References

- 1. M. J. Mao, Z. J. Jia, Planta Medica, 2002, 68, 55.
- 2. Y. Yasunori, K. Masao, Chem. Pharm. Bull., 1995, 43, 1738.
- 3. Y. Zhao, Z. J. Jia, R. X. Tan, L. Yang Phytochemistry, 1992, 31, 2785.
- 4. G. Massiot, J. M. Nuzillard, L. Olivier, et al., Phytochemistry, 1990, 29, 2207.

Received 9 July, 2003